[Isoform 1]: Catalytically inactive when either DNA or nucleosomes are the substrate and does not possess chromatin-remodeling activity (PubMed:15310751, PubMed:28801535). Acts as a negative regulator of chromatin remodelers by generating inactive complexes (PubMed:15310751). ; [Isoform 2]: Helicase that possesses intrinsic ATP-dependent chromatin-remodeling activity (PubMed:14609955, PubMed:15310751, PubMed:15640247, PubMed:28801535). ATPase activity is substrate-dependent, and is increased when nucleosomes are the substrate, but is also catalytically active when DNA alone is the substrate (PubMed:14609955, PubMed:15310751, PubMed:15640247). Catalytic subunit of ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:15310751, PubMed:15640247, PubMed:28801535). Within the ISWI chromatin-remodeling complexes, slides edge- and center-positioned histone octamers away from their original location on the DNA template (PubMed:28801535). Catalytic activity and histone octamer sliding propensity is regulated and determined by components of the ISWI chromatin-remodeling complexes (PubMed:28801535). The BAZ1A-, BAZ1B-, BAZ2A- and BAZ2B-containing ISWI chromatin-remodeling complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The CECR2- and RSF1-containing ISWI chromatin-remodeling complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Within the NURF-1 and CERF-1 ISWI chromatin remodeling complexes, nucleosomes are the preferred substrate for its ATPase activity (PubMed:14609955, PubMed:15640247). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). May promote neurite outgrowth (PubMed:14609955). May be involved in the development of luteal cells (PubMed:16740656).

    Matrix Type

    • Tissue/Cells

    Gene Symbol

    • SMARCA1

    UniProt ID

    • P28370
    Off-the-shelf

    Request the SMCA1 Assay

    Tell us a little more about your study so we can optimize the assay for your specific needs.

    "*" indicates required fields

    This field is for validation purposes and should be left unchanged.