

What Discovery Metabolomics Reveals About Human Biology

Using metabolomics to **uncover disease mechanisms, risk states, and biological heterogeneity**

The Core Problem in Human Biology

Current molecular profiling approaches **remain insufficient to explain phenotypic variability** among individuals who share similar genetic backgrounds, clinical diagnoses, or lab values.

Across nearly every therapeutic area – from neurology to cardiometabolic disease, oncology, renal disease, inflammation, and aging-related disorders – investigators face **the same constraints**:

- Genomics explains risk, not necessarily actual state
- Proteomics captures regulation, but not exposure or flux
- Clinical labs collapse biology into blunt averages
- Animal models fail to reproduce human heterogeneity

What Discovery Metabolomics Makes Possible

Nontargeted, longitudinal plasma metabolomics **reveals how biological processes manifest in real people**, rather than how they are inferred or predicted.

Novel biology is the key to discovery. Sapient's metabolomics approaches provide a **scalable way to measure functional metabolic states in humans**, which enables researchers to:

- ✓ Define **biologically distinct** human subpopulations
- ✓ Separate **disease presence** from **disease mechanism**
- ✓ Reveal **system-wide effects** invisible to tissue-specific markers
- ✓ Capture **environmental, microbial, and drug-related biology** simultaneously

Key discovery metabolomics use cases

Define biologically distinct human subpopulations

Metabolomics data identifies stable “metabotypes” – distinct metabolic states – across human populations that **reflect fundamentally different characteristic metabolic phenotypes.**

- Individuals with similar demographics, genomics, and laboratory values can **have distinct molecular states correlating to very different disease risk**

Separate disease presence from disease mechanism

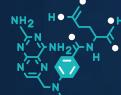
Metabolomics can **identify subpopulations of disease with distinct, differing pathobiology.** For example, multiple cardiometabolic risk states have non-overlapping lipid, fatty acid, and microbiome-linked metabolites.

- In cardiovascular disease, Alzheimer’s disease, autoimmune disease, and cancer, metabolomics can **identify different subpopulations with distinct disease biology**

Reveal system-wide effects invisible to tissue-specific markers

Plasma metabolites **integrate signals from multiple tissue beds** including the liver, kidneys, muscle, and adipose, as well from the immune system, gut microbiome, and environmental and dietary exposures.

KEY INSIGHT


Disease categories defined by diagnosis or lab cutoffs obscure real biological subgroups. **Metabolomics recovers them.**

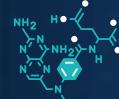
KEY INSIGHT

Metabolomics **distinguishes how disease manifests, not just whether it is present.**

KEY INSIGHT

Many organ-specific diseases have systemic effects. Metabolomics allows for **early detection of whole-body physiological stress.**

Capture environmental, microbial, and drug-related biology simultaneously


Unlike genomics or transcriptomics, metabolomics **captures non-genetic factors and exposure biology** that influence disease by detecting:

- **Dietary** compounds
- **Microbiome-derived** metabolites
- **Drug** metabolites
- **Environmental** exposures (e.g., PFAS)

These biomarkers reflect dynamic **host-environment exposures** which traditional omics cannot reveal.

KEY INSIGHT

Metabolomics **closes the gap between environment, host biology, and disease phenotype.**

Sapient's discovery metabolomics workflows

With unmatched metabolome coverage and rapid, high-throughput workflows, we enable metabolite and lipid biomarker discovery at an **entirely new speed and scale**.

Category	Technical Specification
Metabolites Captured	>15,000 features per plasma sample including polar metabolites, polar lipids, nonpolar lipids, and bioactive lipids
Metabolite Identification	Up to 1,400 metabolites identified using our library of >13,000 reference standards
Unknown Molecules	Putative structural identification using our database of >6M MS2 spectra representing more than 850,000 compounds
Throughput	Capacity to analyze >2,000 samples per day
Quality Metrics	Continuous monitoring of >500 parameters including pooled replicate samples and exogenous system performance standards introduced to each sample
Pathways Annotated	Common pathways include amino acids, fatty acids, triacylglycerols, phosphatidylcholines, eicosanoids, carbohydrates and conjugates, bile acids, alcohols and derivatives, sphingomyelins, diacylglycerols, ceramides, oxylipins, perfluorochemicals, benzoic acids, hydroxysteroids, and steroid esters

Insights enabled by robust discovery metabolomics data

Application	Insights Enabled
Human disease mechanism discovery	<ul style="list-style-type: none"> Identify previously unrecognized pathways driving disease risk Distinguish causal vs. compensatory metabolic changes Generate testable hypotheses grounded in human biology
Patient stratification for translational studies	<ul style="list-style-type: none"> Define molecularly coherent subgroups for downstream analysis Reduce noise from heterogeneous cohorts Improve signal detection in underpowered studies
Longitudinal biology	<ul style="list-style-type: none"> Track within-person metabolic trajectories Study disease progression vs. remission Measure response to intervention without relying solely on clinical endpoints
Cross-disciplinary research	<ul style="list-style-type: none"> Integrate metabolomics with genomics, proteomics, imaging, or clinical data for deeper biological context Enable systems-level models of human physiology

This is **not a targeted assay** looking for known answers. It is a **discovery framework** that lets investigators ask:

- Why do some patients respond to a given therapy and others don't?
- What exposure signals modify genetic risk?
- Which biological processes actually differ between phenotypically similar people?
- Which metabolic signals precede clinical disease, and what contributes to disease progression?

Sapient's metabolomics to advance your research

Our robust discovery approaches can help you **resolve heterogeneity, mechanism, or trajectory** that other omics have not, with:

- Access to **population-scale reference biology** for statistically powered discovery
- Biology-first interpretation**, not just feature tables
- Reusable datasets for **multiple hypotheses**

Contact discover@sapient.bio to discuss your study needs.