Target Metabolite and Lipid Panels

Sapient's suite of panels enable targeted exploration of small molecules in specific chemical classes and commonly associated with health and disease.

Our high-sensitivity mass spectrometry-based method can detect subtle changes in biomarker levels stemming from dysregulated biological processes, disease, drug exposure, and other factors.

Focused biomarker discovery analyses with rapid time-to-insight

Ready-to-order panels with customization available

Analyzed using high throughput mass spectrometry for rapid results in <60 days

Relative quantification

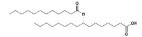
Follow-on data analysis and

biomarker validation services

PANELS OFFERED

Amino Acids Panel

Rapidly measures up to 47 amino acids and their derivatives.


Diglycerides Panel

Facilitates rapid profiling of 14 diacylglycerols (DAGs).

FAHFAs Panel

Detects 25 fatty acid esters of hydroxy fatty acids (FAHFAs).

Phospholipids Panel

Profiles 170 phospholipids across multiple phospholipid subclasses.

Triglycerides Panel

Enables rapid profiling of 161 triacylglycerides (TAGs).

VLCDCAs Panel

Detects 17 very-long-chain dicarboxylic acids (VLCDCAs).

Inflammatory / Antiinflammatory Panel

Profiles dynamic small molecule biomarkers known to associate with inflammatory conditions by exhibiting proor anti-inflammatory properties.

Metabolic Dysregulation Panel

Assays key small molecules in metabolic pathways implicated in metabolic dysregulation.

Fatty Acids Panel

Captures 34 fatty acids and conjugates.

Sapient can also customize a target panel to include your specific metabolites and/or lipids of interest.

Order your panel today.

Request a panel for focused small molecule biomarker discovery at **sapient.bio/panels**.

sapient.bio discover@sapient.bio 858.290.7010